Advanced Search
WANG Zhong, CUI Jinming, TOKUYASU Taku Andrew. A Novel Design and Experimental Tests of a Small Distance Device for High Throughout Electroporation[J]. Journal of Integration Technology, 2021, 10(5): 67-71. DOI: doi: 10.12146/j.issn.2095-3135.20210427006
Citation: WANG Zhong, CUI Jinming, TOKUYASU Taku Andrew. A Novel Design and Experimental Tests of a Small Distance Device for High Throughout Electroporation[J]. Journal of Integration Technology, 2021, 10(5): 67-71. DOI: doi: 10.12146/j.issn.2095-3135.20210427006

A Novel Design and Experimental Tests of a Small Distance Device for High Throughout Electroporation

  • Electroporation technology can penetrate the cell membrane by reversibly applying a certain electric field, forming holes or pathways in the cell membrane, so that the genetic material can be transferred into the cell. Traditional electroporation devices often require several hundred to several thousand volts and are very dangerous to operate. In this study, an electrically insulated polyvinyl chloride (PVC) film was used to make a small distance electroporation device with the electrodes’ distance of 80 μm, which can undertake high flux operation. The experiments show that the proposed small distance electroporation device facilitates cell electroporation with the voltage one order of magnitude lower than the 1 mm standard shock cup, greatly enhance the safety of the experimental operation, high flux also greatly improves the efficiency of experimental operation. But the electroporation efficiency is one order of magnitude lower, and experimental parameters need to be further optimized.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return